0 M ar 1 99 5 Odd Poisson Bracket in Hamilton ’ s Dynamics

نویسنده

  • V. A. Soroka
چکیده

Some applications of the odd Poisson bracket to the description of the classical and quantum dynamics are represented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 99 02 12 8 v 2 [ m at h . D G ] 7 M ar 1 99 9 Remarks on Nambu - Poisson , and Nambu - Jacobi brackets

We show that Nambu-Poisson and Nambu-Jacobi brackets can be defined inductively: an n-bracket, n > 2, is Nambu-Poisson (resp. Nambu-Jacobi) if and only if fixing an argument we get an (n − 1)-Nambu-Poisson (resp. Nambu-Jacobi) bracket. As a by-product we get relatively simple proofs of Darboux-type theorems for these structures.

متن کامل

ar X iv : h ep - t h / 02 04 01 8 v 1 2 A pr 2 00 2 1 Supersymmetry and the Odd Poisson Bracket

Some applications of the odd Poisson bracket developed by Kharkov's theorists are represented.

متن کامل

ar X iv : h ep - t h / 96 02 16 0 v 2 2 0 M ay 1 99 6 Why are the

We demonstrate that in a certain gauge the Lax matrices of the rational and hyperbolic Ruijsenaars–Schneider models have a quadratic r-matrix Poisson bracket which is an exact quadratization of the linear r–matrix Poisson bracket of the Calogero–Moser models. This phenomenon is explained by a geometric derivation of Lax equations for arbitrary flows of both hierarchies, which turn out to be gov...

متن کامل

m at h . D G ] 1 5 A pr 1 99 9 Remarks on Nambu - Poisson , and Nambu - Jacobi brackets

We show that Nambu-Poisson and Nambu-Jacobi brackets can be defined inductively: an n-bracket, n > 2, is Nambu-Poisson (resp. Nambu-Jacobi) if and only if fixing an argument we get an (n − 1)-Nambu-Poisson (resp. Nambu-Jacobi) bracket. As a by-product we get relatively simple proofs of Darboux-type theorems for these structures.

متن کامل

iv : d g - ga / 9 60 50 03 v 1 5 M ay 1 99 6 Flux homomorphism on symplectic groupoids ∗

For any Poisson manifold P , the Poisson bracket on C∞(P ) extends to a Lie bracket on the space Ω(P ) of all differential one-forms, under which the space Z(P ) of closed one-forms and the space B(P ) of exact one-forms are Lie subalgebras. These Lie algebras are related by the exact sequence: 0 −→ R −→ C∞(P ) d −→ Z(P ) f −→ H(P,R) −→ 0, where H(P,R) is considered as a trivial Lie algebra, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994